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Abstract

The threshold theorem is a fundamental concept in quantum error correction that establishes a theoretical
limit on the error rate of physical qubits that can be corrected by a fault-tolerant quantum computing system.
The theorem states that, in principle, it is possible to perform arbitrarily long quantum computations with
a finite probability of error, provided that the error rate of physical qubits is below a certain threshold
value. The standard version of the theorem requires a fault-tolerant circuit using O(m polylog(mT)) qubits
to replace a logical circuit containing m qubits and T gates. Although the scaling of overhead is favorable,
the constant factors hidden by big-O notation can be quite large. Nevertheless, recent advances in quantum
hardware have made it possible to create qubits with error rates that are approaching the threshold value. As
a result, the threshold theorem remains a key concept in the development of practical quantum computing
systems. In this essay, I will introduce the key elements that evolves around this theorem and demonstrate
that fault-tolerance is possible with specific assumptions, particularly in the outlook of different quantum
error correcting codes.
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1. Introduction

Richard Feynmann once famously said, Nature
isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quan-
tum mechanical, and by golly it’s a wonderful prob-
lem, because it doesn’t look so easy’. Ever since
then, quantum computation based applications have
been brought into the limelight and various plat-
forms such as quantum dots, ensembles of trapped
ions, photonic systems and superconducting circuits
have been studied to achieve the physical realiza-
tion of a quantum computer. It is widely recog-
nized that some quantum algorithms can be expo-
nentially more efficient at problem solving com-
pared to classical ones. But despite decades of
research in the field, we are still far from build-
ing a complete quantum computer that could solve
‘interesting’ algorithms and satisfies DiVincenzo’s
criterialll]]. Scalability is a major obstacle from
an engineering prospective while decoherence, e.g.
leaking information to the environment and errors in
computation put a fundamental question in the the-
oretical field. Without error correction, accumulated
noise will disturb the system and ruin the results.
Apart from that, quantum computing relies on uni-
tary operations and it is made from extremely small
components, SO quantum states are more suscepti-
ble to more types of errors than classical computers.
Therefore, we are in need of a fault tolerant scheme.

Fault tolerance involves modifying a circuit de-
signed for a specific algorithm by adding extra qubits
and gates to make it more resilient to noise. Un-
like the normal error correction procedure, where
Alice and Bob use a quantum channel with encoded
states and a quantum error-correcting code (QECC)
assuming perfect encoding and decoding schemes,
fault tolerance accounts for additional noise and
aims to control error propagation. Error propagation
refers to the scenario when a two-qubit gate correctly
interacts with two qubits, but one of them has an er-
ror. This results in a two-qubit error relative to the
ideal world with no errors, such as when a bit flip
(X) error occurs on the first (control) qubit, followed
by a perfect CNOT gate that flips the second qubit
at an unintended time. Fault tolerance addresses this
issue by mitigating error propagation and preventing
it from spiraling out of control.

In the next section, several error correction algo-
rithms will be introduced. And in section 3 two error
models are explained with some crucial assumptions
being made. Relevant error correcting code is state

in section 4 that will lead to the idea of Threshold
theorem. Finally, some threshold-specific codes are
described to illustrate the power of such theorem in
quantum computation.

2. Error correction algorithms

2.1. Classical algorithm

To achieve a state-of-art fault tolerance compu-
tation, we need to start simple. So let’s first have a
brief review on problems we might have when ap-
plying the classical algorithm on quantum computa-
tion.
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Figure 1: The basics of error correction. ‘Measurement’ qubits

can detect errors on ‘data’ qubits through the use of quantum
XOR gates.

A straightforward method for recovering infor-
mation after errors have occurred involves making
at least three copies and using majority voting. This
is known as repetition code. However, this approach
is not suitable for quantum computers due to several
reasons. Firstly, it’s impossible to clone unknown
quantum states[2]. Secondly, taking a majority vote
requires learning the encoded information through
measurement, which destroys quantum coherence.
Finally, binary information only needs to consider
one type of error, bit flip, while quantum states are
susceptible to a wide range of possible errors.

2.2. CSS code

Fortunately, Shor and Steane[3]] discovered a so-
lution to these challenges. Instead of copying infor-
mation to introduce redundancy, they used entangled
states supported by additional bits. To avoid collapse
of quantum information during error correction, they
made a partial measurement that extracted only the
error information (syndrome) and left the encoded
state untouched. To handle the continuum of possi-
ble errors, they recognized that every error could be
represented as a linear combination of standard er-
rors, including no error, bit flip, sign flip, or both.
Furthermore, they found that linear combinations of



correctable errors could also be corrected, enabling
the discretization of error possibilities.
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Figure 2: The Shor fault-tolerant error-correction procedure ap-
plied to measure the syndrome bit for the generator X X) Z (X)
Z ® X. First build and test the cat state, then interact it transver-
sally with the codeword.

This is called CSS codes. The foundation of
this quantum error correction is built upon two main
observations. Firstly, any fault or quantum opera-
tion on a qubit can be expressed as a linear com-
bination of four fundamental operations: the iden-
tity (no error), a bit flip (|0) — [1)), a phase flip
(10) — 10),|1) —- —]1)), or a combination of both
bit and phase flips. Bennett et al[4]]. initially proved
that it is sufficient to correct only these four types
of errors. To correct bit flips, one can use similar
methods to classical error-correcting codes. To cor-
rect phase flips, another observation comes in handy:
a phase flip is equivalent to a bit flip in the Fourier
transformed basis. Therefore, one can first correct
bit flips in the original basis, then correct bit flips
in the Fourier transformed basis, which translates to
correcting phase flips in the original basis.

2.3. Transverse gate

Another way to achieve error correction is to
use transverse gates. A transversal gate is essen-
tially a tensor product of single-qubit gates, which
ensures that errors cannot spread. For instance, the
first qubit of the initial block interacts only with the
first qubit of the subsequent block, and the same ap-
plies for the remaining qubits. Nevertheless, utiliz-
ing solely transversal gates cannot achieve a univer-
sal set of gates. The number of qubits required for a
fault-tolerant circuit can exceed the number of qubits
needed for a noise-free version of the same circuit.
This is due to the additional qubits required for en-
coding data in a QECC and the ancilla qubits used in

a fault-tolerant protocol. And this brought up a very
important parameter: the overhead of a fault-tolerant
protocol, which is the proportion of the total number
of qubits used in a fault-tolerant circuit to the num-
ber of qubits in the unencoded version of the circuit.
We will come back to this later.

3. Error model

Each error correction algorithms should be
tested out on a circuit model. And these specifi-
cally defined models are called error models. Note
here we will combining the definitions of circuits
model and error model, which basically are differ-
ent components inside one fault-tolerant circuit. Be-
fore stating each model, we need to know what error
network[S] is. It is a way to depict a quantum net-
work that experiences noise, which involves identi-
fying error locations, where errors may arise. By
generating networks that account for all possible er-
ror combinations, we can represent the behavior of
the noisy quantum network. This collection of net-
works is referred to as an error expansion of the net-
work. To determine the final computation state, we
sum the states linked with each part of the error ex-
pansion. Operational errors are positioned after each
gate, with the exception of measurements and state
preparation. Memory errors exist on every bit be-
tween operations.

Back to the error model, the primary assump-
tion regarding noise in this study is that it is local,
meaning that the noise affecting different gates and
qubits is independent in both time and space. This
assumption may be relaxed slightly by allowing ex-
ponentially decaying correlations in error network.
Such assumptions are made in classical scenarios
and are likely to be valid in physical implementa-
tions of quantum computers. Therefore, we can, in
the presence of local noise, consider two different
error models:

1. Independent stochastic errors, which is the
most straightforward model. It assumes that
errors are distributed independently and ran-
domly at each error location, and the associ-
ated probability is the probability of an error
occurring at an error location.

2. An adversarial error model, in which an ad-
versary selects errors subject to any other con-
straints to cause the most trouble possible. For
example, an adversarial locally decaying error



model allows the adversary to select the lo-
cations and types of errors provided that the
likelihood of a large group of qubits all hav-
ing errors is exponentially decaying with the
number of qubits.

Adversarial error models are frequently used to
limit error models with complicated but unspecified
correlations and are particularly useful in fault toler-
ance since complicated correlations can result from
error propagation in a noisy circuit.

4. Quantum error correcting code

With all that said, we cannot ignore one cru-
cial aspect, quantum error-correcting code (QECC),
and one of the most popular choices is the stabilizer
code. Mathematically speaking, these code consists
of operations called Pauli operators. And it belongs
to the larger Clifford group which has some very in-
teresting conserving properties.
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Figure 3: Pauli operators, X, Y, Z

This type of QECC encodes k logical qubits into
n physical qubits, forming a subspace of (C2)®n
with a dimension of 2k. The stabilizer formalism,
developed by Gottesman[6f], allows codes to be de-
scribed as the kernel of a linear operator, just as in
classical coding theory.

4.1. surface code

The surface code is a particularly interesting type
of stabilizer code, often defined on a square lattice
with qubits located on the edges. For each face of the
graph, the stabilizer has a generator that is a product
of X over each qubit on an edge bordering that face,
and for each vertex, a generator that is a product of Z
over each qubit on an edge ending at that vertex. The
graph can be on a non-trivial two-dimensional man-
ifold, such as a torus, but practicality dictates setting
appropriate boundary conditions at the edges of the
surface, including possibly leaving holes, to achieve
the desired number of logical qubits.

However, even with good error model and QECC
there is still a loophole in our assumptions: many
types of errors that occur in real quantum de-
vices cannot be represented with stochastic errors.
For example, unitary over-rotation of operations

and small, but non-negligible, interactions between
nearby qubits can give rise to such errors. Therefore,
an explicit construction is necessary to establish an
error threshold. If each gate in a physical implemen-
tation of a quantum network has an error less than
this threshold, it is possible to perform any quantum
computation with arbitrary accuracy.
Thus entering the threshold theorem.

A

Figure 4: Example of surface code

5. Threshold theorem

We will give the definition as below from Gottes-
man:

There exists a threshold value p, with the follow-
ing property: If the error rate p per physical gate or
time step is below p,, then for any € > 0, there exists
a fault-tolerant protocol such that any logical circuit
of size T is mapped to a circuit with polylog(%) times
as many qubits, gates, and time steps, and the out-
put of the fault-tolerant circuit is correct except with
probability &

In practice, the threshold theorem can be some-
what misleading since it implies that there is a single
target value, denoted as p,, that should be aimed for
in all efforts to construct a functional quantum com-
puter. However, this is not entirely accurate since the
exact value of the threshold is highly dependent on
the assumptions made about the system, including
the specific fault-tolerant protocol being used and
the details of the error model.

Also, the standard threshold theorem replaces a
logical circuit consisting of m qubits and T gates
with a fault-tolerant circuit that uses O(m poly-
log(mT)) qubits. While the asymptotic scaling of



overhead is favorable, the constant factors, which
are hidden by the big-O notation, can be quite large.
For the most efficient known protocols, these factors
range from hundreds to thousands, while for proto-
cols maximally optimized for high threshold, they
can reach billions. Although the error rates in the
best qubits created so far are approaching the level
required for fault-tolerant protocols, the number of
qubits that can be reliably realized is still relatively
small in practice. Here we will give some example
on such protocols.

5.1. LDPC code

The first one is Low-density parity check
(LDPO)[7] codes. Previously we have seen surface
code, which is a subset of LDPC called low-rate
LDPC. But now, we will introduce high rate LDPC,
which are capable of correcting as many or more er-
rors as a large surface code. Such codes can in prin-
ciple remove the polylogarithmic overhead from the
threshold theorem, allowing a fault-tolerant protocol
with constant qubit overhead. Also, high-rate LDPC
codes offer a distinct advantage over surface codes
in terms of ’single-shot” decoding. This implies that
error correction can be performed much faster, in a
constant time irrespective of the code size, while sur-
face codes take longer to decode larger codes.

However, there is one inherent drawback to high-
rate LDPC codes which is hard to circumvent. Be-
cause these codes require a high connectivity in or-
der to rapidly spread out the information in their
many logical qubits, LDPC codes with a nonvansh-
ing rate cannot be laid out so that all stabilizer gener-
ators are geometrically localized in two dimensions,
or indeed any finite dimension. This means that
high-rate LDPC codes are most suitable for hard-
ware platforms which allow long range gates with
little or no extra cost. It may also be possible to
lay out a fault tolerant LDPC code-based protocol
in such a way that only a handful of long range gates
are needed during the protocol, or even none at all,
even though the stabilizer generators themselves are
not all localized.

5.2. Concatenation code

We might consider another class of codes which
can be arranged non-locally in 2D or even better 1D
with a fault-tolerant threshold. This is the case for
concatenation code[8]].

The basic idea behind concatenation is to re-

it down into several smaller channels, each with a
lower error rate. The individual quantum codes, also
known as inner codes, are designed to correct errors
that occur within each smaller channel. The result-
ing larger code, also known as an outer code, can
then correct errors that occur across multiple smaller
channels. For instance, a common method of con-
catenation involves using a simple error-correcting
code, such as the three-qubit bit-flip code or the five-
qubit code, as the inner code. This inner code is then
concatenated multiple times, with additional error-
correction steps applied to the resulting larger code.
The outer code can be a stabilizer code, such as the
nine-qubit code, or any other suitable code.
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Figure 5: Concatenation of the 3-bit code. If the error rate is p,
the encoding will give a rate of ¢2'~! p?" for the h'"* level of the
hierarchy.

Concatenation can significantly improve the
overall error-correcting capability of a quantum
code, as the error rate decreases exponentially with
the number of concatenated codes. However, this
comes at the cost of increased computational com-
plexity and the need for more qubits.

5.3. Expander code

A recent proposal involves yet another new
quantum error correction scheme that uses quantum
expander[9] codes to achieve fault-tolerant quantum
computation with constant overhead. The scheme
utilized the concept of expander graphs.

The basic idea is to create a graph with a high de-
gree of connectivity between its vertices, such that
any local perturbation affecting a small number of
vertices has a minimal effect on the overall structure
of the graph. This property makes expander graphs
ideal for use in error-correcting codes, as errors that
affect only a small number of qubits can be corrected
using information from the rest of the code.

In quantum expander codes, the qubits of the

duce the error rate of a quantum channel by breaking code are arranged in a two-dimensional lattice, with
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each qubit connected to several of its nearest neigh-
bors. The code also includes a set of stabilizer gen-
erators, which are measurements that detect errors in
the qubits and are used to correct errors by applying
appropriate operations.

One of the key advantages of quantum expander
codes is their ability to protect against both bit-flip
and phase-flip errors using a single set of stabilizer
generators. This is achieved by using a special type
of measurement, called a “parity check” measure-
ment, which detects both types of errors simultane-
ously. To correct errors, the code uses a technique
known as "flag flipping,” which involves flipping the
values of certain qubits to correct the errors detected
by the stabilizer generators. This is followed by
a process of ”syndrome decoding,” which uses the
measurement outcomes from the stabilizer genera-
tors to determine which qubits need to be flipped.
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Figure 6: An illustration of quantum expander codes. Starting
with a bipartite expander graph between the vertex sets A and B,
the quantum expander code is defined by two bipartite graphs
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But again, the downside is that, measuring the
syndrome is simple in the sense that one needs to act
on a small number of qubits, but the qubits will in
general not be geometrically local.

6. Conclusion

The threshold theorem in quantum fault toler-
ance is a fundamental result in quantum comput-
ing that has significant implications for the devel-
opment of practical quantum computers. The the-
orem provides a threshold value for the error rate
in a quantum computing system, above which it be-
comes increasingly difficult to perform fault-tolerant
quantum computations. One of the most important

tools that has emerged from the threshold theorem is
the surface code. And it has been the subject of ex-
tensive research in recent years. Another important
technique that has emerged from the threshold the-
orem is the use of expander codes. Expander codes
are a family of quantum error-correcting codes that
are highly efficient in terms of their use of resources,
we have seen that it uses algebraic and geometric
property to make fault-tolerant quantum computa-
tion possible with few extra qubits. This is in great
contrast to conventional approaches to fault toler-
ance. The result depends on having no geometric
constraints, on fast classical computation, and above
all only works in the asymptotic limit.

The development of error models is also criti-
cal for understanding the performance of quantum
computing systems and for developing strategies for
mitigating the effects of errors. Various error mod-
els have been developed to study the effects of errors
in quantum computations, including the depolariz-
ing model, the amplitude damping model, and the
phase damping model.

One may be inclined to assume that there is a
necessary tradeoff between performing lengthy log-
ical computations and overhead. The reasoning be-
hind this conjecture is that since the code must be
able to correct more errors during a longer compu-
tation, it may require more overhead. However, it’s
important to note that there is no such tradeoff for
pure quantum error correction. If gate errors are not
an issue, and only errors that arise during transmis-
sion through a noisy quantum channel need to be
corrected, it is possible to transmit k logical qubits
using n physical qubits with a constant error rate
p per qubit sent through the channel. As n grows
larger, k/n can approach a constant rate R, which is
the channel capacity of the noisy communications
channel. Additionally, even for relatively high er-
ror rates, a constant R can be achieved without com-
promising on data rate p. As research in quantum
computing continues to progress, it is likely that the
threshold theorem will continue to play a critical role
in guiding the development of fault-tolerant quan-
tum computing systems.
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